
Creating the
Virtuous Cycle with
Headless, Hybrid,
and Low Code
The Principles of Successful
Modern Web Apps

Ronald Northcutt

REPORT

Compliments of

http://acquia.com/development

Ronald Northcutt

Creating the Virtuous Cycle
with Headless, Hybrid,

and Low Code
The Principles of Successful

Modern Web Apps

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13055-8

[LSI]

Creating the Virtuous Cycle with Headless, Hybrid, and Low Code
by Ronald Northcutt

Copyright © 2022 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Melissa Potter
Production Editor: Katherine Tozer
Copyeditor: nSight, Inc.

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

April 2022: First Edition

Revision History for the First Edition
2022-04-20: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Creating the
Virtuous Cycle with Headless, Hybrid, and Low Code, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Acquia. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Introduction. vii

1. Vicious Circles: The Well-Worn Path. 1
Poor Choices 2
Shiny Object Syndrome 4
Architecture-First Design 5
Monolithic Myths 7

2. Composable: Not Just a Buzzword. 9
Component-Based Design Principles 10
Component Assembly Methods 11
The Prime Directive 12

3. Virtuous Cycle: The Principles That Lead to Success. 13
Separation of Concerns 13
Think of the User 14
Keep It Simple, Stupid 15
Don’t Repeat Yourself 15
Abstraction 16
Single Responsibility Principle 17
Comment Your Code 17
Generality 18
Perfect Is the Enemy of Good 19
Consistency 20
Open Source 20
Incremental Development 22

v

4. Resource Flow and Efficiency: Balancing Business and User Needs. 23
Bandwidth 24
Time to Market 26
Developer Time 27

5. Bringing It All Together. 29
Textbook Example 30
Where to Go from Here 31

vi | Table of Contents

Introduction

In 1991, Tim Berners-Lee developed the first web browser called
World Wide Web and released it to the world. From this humble
beginning came a tsunami that reshaped our world in ways that no
one could have predicted.

The web browser enabled people from all walks of life to create and
consume information from across the globe. This democratization
of technology has led to a Cambrian explosion of sorts. Now, any‐
one can publish content, information, games, community sites, and
applications of all types using the browser as a common platform.

One could even say that the web browser is the operating system of
the internet. Indeed, Chrome OS has proven that the modern web
browser is powerful enough to provide most of the functionality
that any user would need. While the internet itself existed long
before the browser, it was the browser that enabled everyone to
access it.

Today, the browser has become the common system at the heart
of the web. Common web standards continue to drive innovation
by allowing web applications to experiment with new features and
interfaces. We have seen the evolutionary process play out through
this dance of competition and collaboration.

Technology has come a long way since 1991. But after decades of
building, maintaining, fixing, and architecting web-based solutions,
one thing is clear—everything old becomes new again.

While web applications are a specific branch in the broader tree of
software development, the basic guidelines and principles behind
successful applications have not changed since the foundational

vii

beginnings of software development itself. In fact, as complexity has
increased, the need for those basic principles has increased as well.

In this report, I attempt to distill over 25 years of experience archi‐
tecting and building web applications into a series of guiding prin‐
ciples. While I have often acquired this knowledge the hard way
(and sometimes at great cost), it is my hope that I can help others
learn how to think more holistically about the bigger picture. In
other words, take the lessons I’ve learned and avoid those common
pitfalls.

Building modern web applications is not only more critical than
ever, but also more confusing. With traditional websites, CMS (con‐
tent management system) sites, SaaS (software as a service) applica‐
tions, headless technologies, ecommerce, decoupled apps, mobile,
etc., there is no end to the ways that technology is reshaping itself
over and over.

The good news is that once you learn to identify the successful pat‐
terns described in this report, you can apply them to your projects
and prevent problems before they begin. Even better, you can also
take advantage of positive feedback cycles to deliver better results
faster, with fewer mistakes, and with greater ease.

Web-Based Solutions and Challenges
Building web applications often inspires discussions about hybrid
versus headless architectures, or unified versus decoupled applica‐
tions. Popular trends and frameworks usually drive planning. How‐
ever, while these decisions are important, there is a much more
important understanding that must come first.

We must always remember that we are humans, using human-made
tools, to create things for the use and enjoyment of other humans.
The trickiest issue at the heart of technology is not the technology
itself, but the person behind the tool—how they think, work, and
feel about the world.

The fundamental challenge facing architects, developers, and IT
leaders today is that the default approach to software development is
shaped by basic human understanding. This inevitably leads to the
same problems over and over again because the instinctive approach
to creating in the digital world mirrors how we create in the physical
world. By that I mean that people naturally think about building

viii | Introduction

single, monolithic things. Whether that is a chair, a book, or the
next great app, we must first imagine the thing we want to create.
However, just as in any other form of engineering, we need to apply
systems-based thinking and basic guidelines of good design in order
to create things that are scalable, sustainable, and reliable.

Successful web development requires a holistic understanding of
the application you are designing (internal systems) and how it fits
into the broader picture (external systems). Every system creates
feedback cycles that have a net result greater than the sum of those
parts. Whether that net result is positive or negative depends on
how the system is architected and used in operation.

Your problems will rarely be about the technology used. Your pri‐
mary problem will always be at the human level. It is not the tools,
but the mindset that matters, and that is the secret to repeatable
success. When you learn to adopt a component-based approach
and the mindset of virtuous cycles, you can be successful with any
technology. In some cases, you can even be more successful with
old, outdated, or discarded tools because your inherent ability is
where the value lies.

In this report, we’re focusing on web-based applications that rely
on modern browsers as the application framework. However,
these general principles for success apply to any form of software
development.

In order to break with the pain of the past, we must understand
that systems create feedback cycles. These cycles amplify the effects
of building and maintaining our applications. Once we understand
the difference between virtuous cycles and vicious circles, we can
optimize for the results we want.

Vicious Circle Versus Virtuous Cycle
As noted, the default approach to creation tends to focus on a single,
monolithic thing apart from the rest of the universe. Often there will
be features, requirements, or other acknowledgments that describe
the relationship between the thing we are creating and everything
else, but these are often secondary considerations.

With a monolithic mindset, everything done to advance or extend
the application leads to greater problems like increasing technical

Introduction | ix

debt, bugs, poor performance, and slower delivery times. This is
called the vicious circle.

When an application is trapped in the vicious circle, most attempts
to extend or improve the project actually only exacerbate the under‐
lying problems. Eventually, the application must be decommissioned
or replaced before its time.

By contrast, when we pay attention to proper component-based
design, we can create workflows that are optimized for more effi‐
cient development. Applications can become faster, more perform‐
ant, and less error-prone over time. They’re also easier to maintain,
and we naturally develop the ability to pay down technical debt or
simply avoid it altogether. We call this the virtuous cycle.

The goal is to create applications that can generate the virtuous cycle
both within their internal systems as well as within the external
systems that they are part of. In order to avoid the vicious circle, we
need to understand the primary structures at play and the inherent
challenges that come from working with web applications.

Primary Challenges
Most modern web applications are variations on the basic client-
server architecture. In the simplest model, the client makes a request
from the server, which then returns the requested data to the client.
The client then can process that data and make additional requests
as needed.

With web applications, the browser is the primary client. However,
it often may be making many calls to many servers, and those
servers may also be a client making many requests to other servers.
These server requests are often organized into “services” or API
contracts.

On top of that, the browser is responsible for creating and manag‐
ing a complex user interface. This means dealing with user interac‐
tions, updating itself, and otherwise acting like a proper application
should. While the client is often viewed as the “end of the line” in
a simplified architecture, a modern web application also acts as an
interaction layer itself.

Web applications are based on a collection of different systems that
are exposed via interfaces with varying degrees of access and ability.

x | Introduction

Successful applications are able to manage this complexity reliably
and provide patterns that balance the current needs with future
possibilities.

The biggest challenge we face is the ever-increasing number of libra‐
ries, frameworks, technologies, and services that are intended to
solve these problems. As the number of options grows, it becomes
difficult to know where to invest in new tools and where to stand‐
ardize existing ones.

Choosing new technologies and approaches can give us an advan‐
tage, but what happens if those things go away? What happens if
they fail, or if they don’t scale properly, or if they just don’t deliver
on the promise?

On the other hand, what about the risk that comes from the lack of
innovation? Falling back on old tools and approaches may be faster
in the short term, but it does leave us open to disruption by more
modern technologies.

This is the fundamental challenge facing IT leaders and architects
today. In order to be successful, we have to find a balance between
innovation and tradition. Knowing that technology trends rise and
fall, we need to be careful not to adopt new approaches too quickly.
At the same time, we need to be bold in our willingness to disrupt
ourselves and look for better approaches and tools.

The good news is that successful development and architectural
principles are universal. These principles work regardless of the spe‐
cific technologies or the size of the application in question. They can
give us the confidence to adopt or reject new technologies because
we know that our applications are resilient.

Creating Virtuous Cycles
So, how can an application be resilient? While it is impossible to
be “future proof,” using best practices will allow you to remain
“future ready.” The principles that lead to virtuous cycles also put
you in a position to make changes in your application without major
difficulty.

In fact, when a virtuous cycle exists in an application, the natural
tendency is to look for ways to improve, refine, and even disrupt
the application from within. The low level of technical debt coupled

Introduction | xi

with a truly composable approach makes experimentation possible,
and this is one of the synergistic effects we should expect to see.

The goal of this report is to help you create a virtuous cycle in
all your projects. By sharing the guidelines and patterns that make
modern web application development successful, we increase the
chances of your success and enable you to rapidly evaluate and
evolve your tools to meet your organization’s needs. The more you
practice the patterns of the virtuous cycle, the easier and more
natural it becomes.

This is the key secret: there is no secret. It’s not about modern
technology or the latest advances, nor is it about what some other
organization has done to be successful. What works for others may
not work for you. This is why we focus on the fundamental basics
for all successful projects. When this is done, the appropriate archi‐
tectural decisions will naturally arise.

Instead of being trapped by the static image and a waterfall-based
plan, we look at resource flow and efficiency at all levels of the
development life cycle. If you design a system that is efficient and
productive for all users, then you will win every time. Good choices
lead to positive feedback cycles that reinforce successful patterns.
The outcome of every successful project is the virtuous cycle.

Before we can talk about how to set up the virtuous cycle, we need
to understand its opposite: what leads to the vicious circle, and what
trends, patterns, and habits to avoid if you want to stay out of that
trap. Once we are able to identify these things, the principles of
successful web application development will make sense, and you
will understand how to apply them to your own process.

xii | Introduction

1 Edsger Dijkstra, “The Humble Programmer” (ACM Turing lecture, published in Com‐
munications of the ACM 15, no. 10, October 1972: 859–66).

CHAPTER 1

Vicious Circles: The
Well-Worn Path

The vicious circle trap is not new; it goes back to the foundation
of software development as a whole. As technology advances with
greater power and more tools, it becomes more challenging to build
good applications. This is called the software crisis:

The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.

—Edsger Dijkstra1

The term software crisis was coined at the first NATO Software
Engineering Conference in 1968 in Germany when the attendees
gathered to discuss the new concept of “software engineering” and
were surprised to learn that similar issues were plaguing them all.
They used “software crisis” to describe the common problem.

The causes of the software crisis were related to the increasing
complexity of hardware, and the challenges in adapting the software
development process.

1

So, what were the problems they were having?

• Projects running over time and budget.•
• Software was becoming more inefficient and error prone.•
• Software was frequently failing to meet the requirements for the•

project.
• Software was increasingly difficult to extend and maintain.•
• Some projects failed before they could even deliver workable•

code at all.

Does this sound familiar? These are the same problems that face
many organizations today. The solution to the software crisis was
discovered not long after we knew what the problems were, but it
is often misunderstood or misapplied. This is actually good news
because while computing power has continued to grow, the solution
has not changed, proving that it is not actually about the technology.

So, what is this radical solution? It is component-based design and
separation of concerns—the foundational principles of software engi‐
neering as we know it. Creating the virtuous cycle and avoiding the
software crisis is not a function of time or technology. The basic
principles that worked 60 years ago will work today…and 60 years
from now.

To overcome the software crisis, we need to understand the ways
that poor choices in design and architecture lead to the vicious
circle. Software engineers today have more tools and power than
ever, and that often creates even more confusion. We can reduce
confusion by learning to avoid the worst mistakes and common
pitfalls.

Poor Choices
At its core, the vicious circle is quite simple. It’s all about poor
choices. Poor choices lead to ever-increasing technical debt, more
fragility in your applications, and slower development. In other
words, poor choices cause pain.

It can be a challenge to identify the difference between a poor choice
and a good one, especially if an architect or engineer doesn’t have
enough experience. Given a long enough timeline over a number of

2 | Chapter 1: Vicious Circles: The Well-Worn Path

projects, experienced developers will naturally learn most of these
principles. Often this is exactly what we see.

Most organizations are faced with a pretty difficult choice. On the
one hand, they can spend their valuable resources trying to identify
and hire very experienced architects and developers. This is already
difficult in the best of times and becomes even more challenging
in a competitive market where everyone is looking for the same
people. Experienced developers are worth a premium because the
investment will save time and money in the long run. They can also
accelerate the pace of innovation and unlock new opportunities and
advantages.

On the other hand, organizations can try to avoid taking risks
and stick to very limited approaches that are more tolerant of less
experienced developers. This is often the choice of organizations
that rely on a single, broadly adopted technology stack. While this
may be a safer course in the short-term, ultimately it will lead to
stagnation, and the organization will fall further and further behind.
It is difficult for an industry standard to adopt new approaches and
avoid disruption. Becoming a fossil is easier than one may think,
and given the pace of technological innovation today, it is even
easier.

Another option is for organizations to hire architects and develop‐
ers of varying skill levels. Then they attempt to build applications
with varying degrees of ambitious plans, and often with less-than-
ideal budgets and timelines. This approach can work if an organiza‐
tion has the ability to experiment and rapidly decommission failed
projects. This is a function of organizational tolerance to risk and
possible “waste.”

Most of the time, however, organizations are unable or unwilling
to abandon existing investments. And so, they continue to invest
in less-than-ideal projects that accrue technical debt and get more
difficult to manage over time.

This process is compounded by turnover in the development team.
Employee churn is a fact of life, but as projects become more painful
and difficult, they tend to increase the burnout rate of developers.
This continues to accelerate the overall degradation of the applica‐
tion as new employees are hired and expected to contribute to a
complex and failing project with layers of poor choices embedded
by previous developers. Those original developers have long since

Poor Choices | 3

left, and there is no way to understand why those choices were
made. Eventually, the organization is forced to start over and invest
in creating new projects, without accounting for those problems or
capturing the value of those difficult lessons. The result is that the
organization is unable to “learn” from its own mistakes, and so it is
often doomed to repeat them.

It is common to approach the new project in a way that reinvents
many of the same patterns of the previous application. The business
users will often define requirements based on their experience in
the previous system. The architects may not have the institutional
experience to know the difference between what the users say and
what they need.

Repeatedly making poor choices is a major trap and one of the
biggest sources of difficulty because it can be tough to break the
cycle. Over and over, the organization makes similar decisions, even
as they change technologies. The results may be a bit better for a
while, but the vicious circle will rise again.

Shiny Object Syndrome
It is tempting and common for architects to look outside for a new
tool or approach that will solve their problem. The impulse is to
do away with the old and use something new that has advantages
that were not available before. This time things will be different,
they hope. However, unless they have a good understanding of the
principles of good development, then it is just another trap.

Shiny object syndrome, aka silver bullet-itis, is when IT chooses the
latest and greatest tools and frameworks as the penultimate solution
to their problem. This means focusing on new frameworks and tools
for their own sake and assuming your problem will be solved by
choosing a new tool. This is a particularly easy trap for developers to
fall into. It’s a natural temptation to want to use new tools and learn
new techniques.

Indeed, a good developer will often be on the lookout for new “toys”
to experiment with. This impulse often hides the core truth we are
discussing here—real solutions are not about the tools we use but
the mindset we hold when applying those tools.

This can be tricky because it is easy to look at successful applica‐
tions and outcomes and mistakenly attribute the success to the

4 | Chapter 1: Vicious Circles: The Well-Worn Path

framework or tool. This can be exacerbated by sales organizations
and evangelists who are tasked with promoting these tools. Unless
they have the training to take a “consultative approach,” then they
will only see the opportunity to sell their tool or ideology. In fact,
well-meaning tech enthusiasts are often the guiltiest here. They are
so focused on evangelizing their preferred tool that they don’t think
about what is best for the project itself.

This trap is greatly compounded when developers making the deci‐
sions don’t have experience using the new technology, which leads
to a higher risk of poor choices and flawed implementation patterns.
It is tempting to read about the advantages of the powerful features
provided by new tools and get swept up in the excitement of what
that could mean. This doesn’t mean that those tools don’t have
advantages. What it means is that the problem isn’t with the tool
itself.

If you can’t solve your problem reliably with 10-year-old technol‐
ogies, then different tools are not likely to help. When properly
applied, they may make things faster, easier, or more efficient, but
in and of themselves, these new shiny toys cannot make up for bad
design patterns.

By way of analogy, if you are a poor tennis player, buying a newer
racket is not going to help your game. The only thing that will help
you is to focus on training the basics—working on the fundamental
aspects of the game, working on your technique, and understanding
the strategies and approaches necessary to win. You need to have an
open and honest assessment of your own skills and abilities as well
as your weaknesses and how you plan to overcome them.

To be clear, better tools might help some things. However, the tool
cannot make up for weak skills, inexperience, or a lack of good
engineering.

Architecture-First Design
Another related challenge is an architecture-first design pattern. We
see this often with trends in the industry. Buzz words like micro‐
services, MACH, headless, and decoupled are examples in the web
application field.

These architectural approaches can have a ton of value, and often
can be implemented in a progressive way. However, without a

Architecture-First Design | 5

nuanced understanding of the pros and cons of the architecture,
it is difficult to avoid a poor decision. For example, headless systems
often provide more flexibility for delivery across multiple channels;
however, they also require more development time and more com‐
plex deployment setups.

All too often, organizations will choose an architecture based on
other successful projects and decide that this is going to solve their
current problem. While the success of another application is a useful
data point, we must always remember that every project is unique in
some way.

This is like using someone else’s blueprints to build your house
without actually looking at what you need. All architectures are
potentially valid, but the appropriate architecture is a result of
understanding the needs, constraints, and long-term goals of the
project and organization.

You need to ensure that you have the right tool for the job and
that you’re making good use of the resources you currently have.
This may be existing technologies and tools, developer resources,
experience, organizational maturity, budget, and other factors. You
wouldn’t want to use a hammer to put a screw into a piece of wood,
no matter how great that hammer might be.

Just like with shiny object syndrome, it can be challenging to under‐
stand how to apply new architectures without actually using them.
And it is tempting to look at other examples in successful applica‐
tions and assume that those same patterns will work for you.

A great example of this is Netflix and microservices architecture.
Between 2009 and 2012, Netflix refactored its monolithic architec‐
ture into a loosely connected series of microservices. This allowed
them to continue driving innovation, expanding to over one thou‐
sand microservices today. They have also needed to create new
tools and services to manage this network, including Conductor
(a microservices orchestrator), Simone (a distributed simulation
service), and Mantis (a streaming data analysis tool. They have
even built their own CDN (content delivery network) and shipped
Netflix-specific red servers to internet providers all over the world!

Netflix’s success with microservices architecture is one of the most
impressive you’re likely to see. They have done things and changed
things in certain ways that have given them a distinct advantage.

6 | Chapter 1: Vicious Circles: The Well-Worn Path

https://oreil.ly/rfdWB

It is worth studying their success in order to understand the value
of such an architecture. However, it is a mistake to assume that
it is also going to be successful for you. Most development teams
simply don’t have the size or the scale to apply a similar solution.
Trying to replicate what Netflix has achieved with their microservi‐
ces approach on a smaller scale can often be worse than using a “less
interesting” approach.

The trade-off with microservices is that it leads to greater complex‐
ity. For Netflix, this complexity is offset by the advantages they get
in terms of redundancy, uptime, and self-healing capabilities that
enable them to deliver their service with the quality their customers
expect.

It is vitally important to remember that your organization is unique.
Your team and your resources are also unique. And every project
you have, no matter how similar, should be approached with a fresh
mind.

Building on the past can be a good thing and disrupting yourself
can also be a good thing. But choosing an architecture because
it sounds interesting or has been successful for someone else is a
short-sighted approach that will lead to more problems than you
can realize before it’s too late.

Monolithic Myths
Perhaps no concept or word is as widely despised and cursed as
monolith has come to be. In addition to being a powerful term that
characterizes what we may think of when we imagine the vicious
circle, it is largely used as a curse or insult. Calling an application
“monolithic” is a quick way to make enemies and lose friends.

The monolithic approach is the easiest and most intuitively sensible
way to build programs and applications, especially for small teams
or single developers. Having all the resources in a single place in the
single stack can reduce complexity and increase deliverable time.

Here we find the first “monolithic myth”: any degree of unification
is a monolithic application. Whether that is the unification of the
backend and frontend or the unification of multiple applications
in a single repo, many people mistakenly call this a monolith.
It is not the unified layer that makes a monolith, it is the lack
of composability. This means the components that make up the

Monolithic Myths | 7

https://oreil.ly/s1A6E

application are not independent and have many cross connections
that make them impossible to separate.

Monolithic applications are so common because they are much eas‐
ier to build. A developer starts on something small and simple, and
then slowly adds bits and pieces here and there. For a small project,
a single developer (or small team) can hold the entire application in
their head, so this can be an acceptable trade-off. For a POC (proof
of concept), sample, experiment, or other low priority project, this
is not a problem. For production code, however, this is a recipe
for disaster. That is why we see such instinctive pushback against
monolithic applications. The pattern does not scale.

One problem is that many people equate monolithic with a unified
architecture. Having all of the code in one place or having all of
the services on one server is not necessarily monolithic. In a true
monolith, it is difficult to update or change one piece without
disrupting the whole. People may describe it as “spaghetti code”
because it is very much like a messy bowl of spaghetti. It is difficult
to know where one component ends and another begins, making it
challenging to unravel and fix problems. When everything is tied
to everything else, it becomes far easier to ignore problems and
leave things as they are. Over time, technical debt increases, and the
complexity of the application increases at an exponential rate.

To avoid monoliths, you must have a mindset that allows you to
build composable solutions. Unified architectures and traditional
systems are not necessarily monolithic. By the same token, decou‐
pled, headless, or other “modern” applications are not necessarily
composable. In fact, it is incredibly common to see monolithic
decoupled applications.

Above all else, we should focus on composability. True composabil‐
ity leads to stable systems that are easier to maintain and upgrade
over time. Composability is what makes it possible to limit technical
debt and enable us to take advantage of new technologies as they
come along.

8 | Chapter 1: Vicious Circles: The Well-Worn Path

CHAPTER 2

Composable: Not Just a Buzzword

Composable might be the word of the year, and everyone may claim
to have composable solutions, but not everyone understands what it
means. As we talk about composability, let’s be careful to avoid silver
bullet-itis. It is easy to say that something is composable, and easy to
expect it may be true. In reality, this may not be the case. So, what
does composable mean?

Composability is a system design principle that is organized around
the relationships of different components. Composable systems pro‐
vide a collection of components that can be assembled in different
ways to achieve your goals. These components are the fundamental
building blocks used to build your solutions. As we will see, the
principles behind the virtuous cycle rely upon a truly composable
architecture.

Composable systems are more resilient because it is easier to evalu‐
ate and test each component. This makes these systems trustworthy
and future-ready. Adopting new technologies can be done by replac‐
ing older components with newer ones. This progressive approach
allows applications to evolve and extend their functional life far
beyond their original build.

This whole concept of composable architecture and component-
based design had its start at the same NATO conference on the
software crisis in 1968. The software engineers at the time realized
that standardization and modular architecture were as important to
creating software as they were to creating hardware.

9

This concept led to a new higher order of languages and paradigms;
and it even continues to evolve today. But the core solution to the
software crisis has remained unchanged. People may debate object
oriented programming versus functional programming, or MVC
(model–view–controller) versus MVP (model–view–presenter), but
any of these approaches will work great if they are component based.

Component-Based Design Principles
Component-based design emphasizes the separation of concerns
in terms of application functionality. These components may be
services, objects, functions, or other logical pieces in a system, but
the concept remains the same.

There are several key features to composable components. While we
need to make compromises on the perfect component architecture,
these guidelines should help. Ideally, the components in a composa‐
ble system should be:

Modular
Good components can be added, removed, or swapped out with
ease. They will typically follow a standard integration pattern
and require little effort to assemble.

Independent
Components should be as independent as possible. While they
may often have dependencies and cooperate with other compo‐
nents, they (and their dependencies) should be replaceable and
ideally used on their own.

Stateless
Components should treat each request or interaction as an inde‐
pendent transaction, regardless of previous interactions. This
is why component-based systems will often include a state man‐
agement system.

Reusable
If a component is modular, independent, and stateless, then it
will also be reusable as well. While this feature may be implied,
it is important to call it out. Reusability is a critical feature of
composability.

In a truly composable architecture, you can take any component out
and replace it without impact on the rest of the system. In practice,

10 | Chapter 2: Composable: Not Just a Buzzword

this can be a challenge, but if you have a composable architecture,
those challenges will be kept to a minimum.

This is a reuse-based approach that allows you to compose software
from loosely coupled components. This solves the software crisis by
setting up the virtuous cycle and providing benefits for the applica‐
tion as well as the organization itself.

Component Assembly Methods
Component-based design principles take these reusable and swap‐
pable pieces and assemble them into different solutions. One of
the fundamental decisions that you need to make is what assembly
method you’ll use for an application.

Historically, assembly methods were what we would consider high
code. That is, they require a high degree of direct coding or devel‐
oper involvement to assemble the components into a functional
overall system.

More recently however, there’s been growing excitement around low
code assembly tools. Low code tools typically provide some type of
interface that makes it easy to assemble components into an applica‐
tion without having to write a lot of code. In fact, with the rise of the
citizen developer, we see a whole host of tools that are specifically
designed to allow nondevelopers to assemble applications without
writing any code at all.

The evolution of software development has been a steady march
from high code to low code. The original programs were holes
punched in cards. From there, developers moved into using assem‐
bly language that was very similar to the machine code it was com‐
piled into. Assembly language gave rise to higher-order languages
that provided greater abstractions that were more humanlike to
make it easier for developers to do what they needed to do.

And now, you see that this has evolved to the point where, without
any development skills at all, people can actually create applications
with a high degree of success without knowing any code whatsoever.
This evolution is a natural and encouraging trend. It means develop‐
ers can produce better work in less time.

It is important to remember that both high- and low-code assem‐
bly methods are valuable, and necessary. Given the rapid pace of

Component Assembly Methods | 11

change, we should not be shy about taking advantage of any tool
or approach that makes us faster, so long as the results are good.
Look at adopting new technologies and architectures where they
make sense in the context of the larger project and organizational
toolset, and temper this openness with a wariness to adopt new
things because they are new. This is a delicate balance.

The Prime Directive
The primary guiding principle should be this: we should build com‐
posable applications or none at all.

Monolithic applications are the antithesis of composability, and lead
to the vicious circle and the pain of the software crisis. While a
quick POC or experiment may be created in a monolithic format, it
is not a permanent solution.

Truly composable systems are a requirement for the virtuous cycle.
They are faster to build and simpler to test. They are easier to
adapt and change over time. Most importantly, they lead to the
creation of a library or collection of components that can be reused
over and over again. This is why composable systems lead to faster
development workflows over time.

12 | Chapter 2: Composable: Not Just a Buzzword

CHAPTER 3

Virtuous Cycle: The Principles
That Lead to Success

The virtuous cycle depends on innumerable factors. Different
authors and experts have tried to name them all, and there are
many opinions on what the core principles for successful software
development should be. There are common patterns that repeat
often, and these define the best practices that we see across the
board. This chapter provides a high-level list of the key principles to
focus on with regard to web applications.

We have already touched on many of these principles, but let’s take
a moment to explicitly define and discuss them. Many of these may
be familiar to you, while others may not be. Still, it is important to
focus on these principles in all of your projects. Coming back to the
foundational basics is one of the key aspects of success.

Separation of Concerns
One of the most foundational principles in software engineering
is the separation of concerns (SoC). This is a design principle that
divides an application into distinct sections. This results in code that
is typically easier to test, understand, and maintain.

Any program that does SoC well will be modular or composable in
nature. In order to be truly composable, you need to ensure that the
other principles are followed as well. However, simply breaking your

13

codebase into parts or sections will go a long way toward helping
you minimize the risk of monolithic entanglement.

There are many approaches to dividing code into sections, such
as object-oriented positioning (OOP) and functional programming
(FP). There are also architectural patterns like MVC and MVVM
(model–view–viewmodel). How you break up a codebase will
depend on your needs, the language used, and the preference of
the team. The “best” approach is the one that works best for your
application and team. As long as you have a good SoC, then the
specific strategy is less important.

Think of the User
In all aspects of application development, we should be mindful of
the user. This includes not only the end user experience (UX) for the
application, but also the future developer experience (DX). There
are also times when a “user” may be an external system or outside
application that will need to rely on some type of interface (like an
API).

Primarily, we want to be sure that we can design programs that will
make things easier for the user to do what they need and reduce
sources of friction or frustration.

For UX, we want to focus on a clean interface that provides clarity
on what to do using common patterns and standards. There are
times when you may need to introduce an unknown pattern in
order to improve the overall UX at the expense of some frustration,
but this needs to be a purposeful choice.

For DX, we want to optimize for productivity for the developer
and encourage the principles that lead to the virtuous cycle. In a
good project, it is easier to do things the right way than it is to do
things the wrong way. This involves project standards, development
tools, understanding of the project guidelines, and ensuring there is
enough documentation to get a new developer up and running.

Thinking about the user should become second nature for develop‐
ers and architects. Regular code reviews, user testing, and feedback
discussions can help to reinforce and improve the experience for all
users.

14 | Chapter 3: Virtuous Cycle: The Principles That Lead to Success

Keep It Simple, Stupid
In 1960, Kelly Johnson, lead engineer at the Lockheed Skunk Works,
handed a team of design engineers a small toolset. He told them that
the jet they were designing needed to be repairable by an average
mechanic in limited conditions using commonly available tools.
Johnson transcribed this directive as KISS, and by maintaining this
constraint, they were able to create advanced aircraft that were more
robust, easier to maintain, and designed to be repaired.

In this context, “stupid” reminds us to avoid overengineering solu‐
tions or doing “clever” things that are actually foolish. The most
resilient systems tend to be very simple, and so needless complexity
should be avoided. This includes not only the code you write, but
also the number of services and integrations that are included.

Complexity is a natural byproduct of any project. It will naturally
arise of its own accord. So, it is vitally important that we focus on
constantly enforcing simplicity. Adding new code and services is
easy but removing them can be difficult. Choosing not to include
something in the first place is even more difficult.

Simplicity is an important design goal. At every stage, we should
be evaluating what should be added and what can be taken away.
Refactoring and refining our code should be an ongoing process.

Always remember that simplicity done well is often described as
elegant. Truly elegant code is evident by the fact that it is designed to
be repaired and extended. This type of code is delightful to use.

Don’t Repeat Yourself
Simple code that has good separation of concerns should also be
“DRY.” That is, we should not waste time and energy redoing the
same work over and over again. If a developer is writing code that
is functionally similar to something else, then there is waste in the
system.

DRY code also encourages reuse and composability. Any functional
subsystem should be reusable. This not only saves time in writing
code, but also ensures that any changes to that reusable code will
be leveraged everywhere it is used. Building a collection of modular
components allows you to reuse your existing work both when

Keep It Simple, Stupid | 15

creating new code as well as when improving or refactoring existing
code.

A general rule of thumb is that if you are building something more
than once, then it needs to be standardized and reusable. Having
a library of utilities, helpers, API interfaces, and other tools is the
typical result of DRY programming.

Abstraction
As your application grows in complexity, it will naturally develop
certain abstractions and layers of separation. Often this begins as
utility or helper functions but can become entire patterns or subsys‐
tems in larger applications.

The goal of abstraction is to suppress some of the complexity from
the user and maintain a simpler interface that gives the user what
they need. This abstraction can take the form of interfaces or con‐
ventions that enable standardization of common patterns. This can
not only make it easier for the user but also open the door to more
advanced functionality in the future.

A great example of this is a database abstraction layer. On the sur‐
face, this would simplify the way a user interacts with the database,
making it easier for them to quickly access the database in the most
common ways.

A database abstraction layer also creates other opportunities for
improvements. This abstraction layer can include protections
against common database attack vectors or sanitize data before it
is inserted in the database. It can also provide a more restricted
security access layer to the database itself. It could be extended to
provide similar access to other data sources.

With web-based applications, API services often act as an abstrac‐
tion layer within the architecture. Even here we may find value in
using a library or utility to manage the interaction with that service.
This is why it can be tempting to focus on adding microservices and
APIs to our application stack.

One warning—while there are great advantages to abstraction, we
must be careful to avoid the temptation to add unnecessary com‐
plexity. Always remember to focus on simplicity first. When an

16 | Chapter 3: Virtuous Cycle: The Principles That Lead to Success

abstraction layer provides a simpler method for working with and
maintaining systems, then it is usually a good fit.

Single Responsibility Principle
If components are simple and DRY, then they will often be restricted
to a single responsibility. Every component in a modular system
should focus on its own part of the whole, often to a narrow degree.
Your functions, methods, and components should really do one
thing, and do it well.

Keep in mind that in a composable system, you will often have
“super components” that are composed of other components. Your
more atomic components should be simple and clear, but your com‐
plex super components should also be clear in their responsibility.

This encapsulation of functionality is a further extension of the SoC
principle. Whenever you refactor or review code, it is good to look
with the single responsibility lens. Is this component doing “too
much”? Can we simplify its operation and minimize complexity by
breaking it up?

Some developers like to adopt rules about maximum lines of code
that a component (object method, function, etc.) can have. While
not necessary, it can be helpful to have guidelines for a team or
project. The single responsibility principle leads to simpler compo‐
nents that are easier to read, understand, and test.

Comment Your Code
One of the problems that leads to poor choices is lack of historical
context as newer developers wrestle with code that someone else
wrote. To be fair, this also affects more experienced members of
the team, and even the developer who wrote the code may have
forgotten the details about it!

In any case, the solution is the same—document the code. Docu‐
mentation describes how the code is expected to work, how to use it,
and often why certain choices were made. Good documentation also
includes examples, where necessary, and is useful for helping future
developers in learning how to use or fix what was done.

Sometimes it makes sense to maintain documentation outside of
the code, especially for utility libraries that may be used across

Single Responsibility Principle | 17

many projects. However, the default instinct should be to provide
documentation inside your code. Typically, this is in the form of
inline and more formal docblock comments.

Every method, function, class, or other component should have
comments in code. Every single one. This not only helps to preserve
the knowledge about those components but can be invaluable later
when there is a need to fix or refactor the code. Good comments will
also include notes to future developers about places for improve‐
ments or other “to-do” items that could be valuable later.

Make documentation part of your coding requirements and look for
common standards for commenting. Most of the time, you can also
get the best of all worlds by adopting commenting formats that can
be parsed to generate documentation outside of the code later. This
habit is one that all developers should adopt, and all organizations
should expect.

Writing good comments and documenting your components is an
investment in future efficiencies. The payoff will come in the form
of fewer bugs, more clarity in your code, and greater reuse overall.

Generality
Optimizing components for reuse and following the DRY principle
will often lead to a degree of generality, ensuring that your software
is flexible enough to work in a variety of situations. Typically, this
means removing artificial restrictions or overly specific assumptions
to encourage reuse.

A great example of this is the Y2K problem. In the late 1990s, there
was a growing realization that a significant body of software had
been created to store year data in two-digit format. This meant that
when the year 2000 came around, much of that software would
register the “00” and “think” it was 100 years earlier.

The default assumption the developers made was that the software
was running in the 20th century. There was quite a bit of concern
about the potential problems with this limitation, from banking
to power grid failure. Many organizations were forced to invest in
large-scale projects to refactor or “fix” their software, sometimes
with major difficulties.

18 | Chapter 3: Virtuous Cycle: The Principles That Lead to Success

For those developers who stored time in a less restrictive format,
this was no concern and their more general approach was seen as a
wise and sustainable choice.

In hindsight, it may be difficult to understand how anyone could fall
into such an “obvious” trap. However, this is still a problem to this
day. Many programs store time and date data using Unix time, which
is a 32-bit register measuring seconds since 1970. The problem with
this approach is that this will fill the 32-bit space in 2038, leading to
a repeat of the Y2K problem.

While these are specific examples, there are many times when
application decisions and assumptions today can cause problems
tomorrow. Good developers know that it is useful to provide enough
generality in the system to accommodate for unforeseen issues that
may pop up later.

Perfect Is the Enemy of Good
Sometimes the best choice is the worst choice. Good software design
is about making compromises based on time, budget, requirements,
and developer ability. Most projects begin with lofty goals that are
diminished or watered down over time.

This process is actually a good thing. If we were to build the most
expansive and impressive software we could imagine, then the work
would never be complete. Most of the time, the ideal situation is
to make good choices to achieve a good result rather than waste
resources attempting to achieve perfection.

Perfection-seeking can take many forms. Sometimes it is over-
optimizing each phase of a project instead of completing things
with reasonable inefficiencies. Sometimes it is an obsession with
“pixel-perfect” design results. Sometimes it is simply discussing or
debating the plan for weeks and months instead of actually getting
to work.

Remember that the last mile to perfection is the longest. Focus
on creating the virtuous cycle and allow good results to become
great results. The strive for improvement is noble, but the focus on
perfection is self-defeating. Simplicity, speed, and resilience are the
hallmarks of good software. Perfection is an illusion.

Perfect Is the Enemy of Good | 19

Consistency
Creating software is often a team effort that takes place over months
or years. With so many people contributing to the codebase over
time, it is easy for different developers to introduce their own
preferences on how the code is written. This can lead to major
inefficiencies because each piece of the application might follow
different paradigms or have different expectations. A lack of consis‐
tency across the applications can be a massive drain on developer
performance and a source of unexpected bugs and friction.

The easiest way to avoid these problems is to adopt consistent stand‐
ards across the project, including basic things like code formatting
and commenting conventions. This can also include more advanced
opinions about things like recursion, loops, or other software pat‐
terns. Automated code review tools can be included in the workflow
to find and optionally fix areas where inconsistencies have crept in.

Over time, most applications will naturally increase in size and
complexity. Enforcement of project standards helps to maintain
consistency and will keep the code cleaner and more efficient.

Open Source
One of the fastest ways to build applications is by utilizing open
source technology. Open source means that the code is available to
be viewed or changed, and often has a free and permissive usage
license.

It is common for developers to accelerate projects by assembling
existing open source code into a new project. In addition to getting
“free” code and support, common open source projects often have
additional resources in the way of documentation, code samples,
and even entire projects.

There are considerations to keep in mind, however. There are thou‐
sands of open source projects, frameworks, and communities to
choose from. Some of these may not have good security or perfor‐
mance considerations or support. Choosing the wrong open source
project can sometimes increase your technical burden.

20 | Chapter 3: Virtuous Cycle: The Principles That Lead to Success

Understanding how to evaluate and find good open source projects
could be the subject of an entire report; following are some tips to
consider:

• Look for projects that have history. Active projects that have•
been around for a while usually have a track record of success.

• Look for projects that have a broad user base. More active users•
means that the code will likely have more updates, more eyes,
and a longer future.

• Pay attention to the community culture. Communities with an•
open and inclusive culture are more likely to grow and stay
healthy. Restrictive or negative communities will drive away
good developers.

It is impossible to build web applications today without reliance on
some open source code. Even completely custom code is dependent
on browsers that are largely open source in nature. It is important to
understand how to leverage open source code for your projects.

As a final note, keep in mind that part of using open source code
means contributing. Sometimes that is as simple as issuing a bug
report or testing a patch. However, it is always useful to look for
ways to contribute time and code back to the community.

Remember, it is easier to contribute 5% of what’s missing than build
100% of what you need. If you follow the principles of modularity,
generality, and consistency, then you can find many opportunities to
give back to the community. The upside is that you also get more
people using, testing, and contributing to your code as well!

We can get more results over time from less work—the rising tide
lifts all ships. This is a very clear example of the virtuous cycle at
work.

Open Source | 21

1 John Gall, General Systemantics: An Essay on How Systems Work, and Especially How
They Fail (General Systemantics Press, 1975), 65.

Incremental Development
A complex system that works is invariably found to have evolved from
a simple system that worked. A complex system designed from scratch
never works and cannot be patched up to make it work. You have to
start over with a working simple system.

—John Gall1

One of the major problems with the vicious circle is that it becomes
nearly impossible to make changes over time. Incremental develop‐
ment helps avoid this problem when combined with component-
based design principles.

When you take an incremental approach, there is a consistent
addition of small bits of functionality. Once you have tested and
accepted each new component, you can safely move on to the next
one. Over time, complexity will naturally increase as the system
becomes more robust. However, this growth is sustainable and man‐
ageable.

Agile software development is very much in alignment with this
principle. However, even waterfall methods of planning can be
organized to follow an incremental process. In any case, priority
should be given to the simplest use cases that provide for high value
features for a minimum viable product (MVP). More complex com‐
ponents that have other dependencies or are more likely to change
can be moved to later in the development cycle.

Everything great first begins as something small. Starting simply and
focusing on the fundamentals ensures that the project can continue
to grow and evolve over time. This approach also makes it easier to
maintain a balance between the resources you have and the goals of
the project.

22 | Chapter 3: Virtuous Cycle: The Principles That Lead to Success

CHAPTER 4

Resource Flow and Efficiency:
Balancing Business and

User Needs

Following the guidelines outlined here will go a long way to helping
you create the virtuous cycle and successful web applications. How‐
ever, there will always be a need to find compromise between the
goals and the budget.

Often, an organization will look at only the initial costs or maybe
the development time as the primary resource. This can be helpful
but leads to challenges because we must think about the users. The
up-front cost is not the only resource to consider.

Focusing on the proper and efficient use of resources is incredibly
important. If this is done at each stage, and the principles are
applied, then everything else will take care of itself. In fact, many
considerations like tech stack or architecture won’t really matter
if you have an efficient and workable workflow. This ensures that
resources are used wisely, and in a composable application, changes
or adaptations are always possible.

As noted, we also need to consider the end UX as well as the DX.
Balancing the needs of the whole workstream is important in order
to not only create but also maintain the virtuous cycle. When we
focus on the UX and DX, we see an inverse relationship between the
user’s resources and the developer’s. Many organizations will make

23

the mistake of paying attention to only one or the other, but both are
vital.

As we make the UX better, the DX will suffer, and vice versa. This is
where compromise comes into play and the ability to take a holistic
view of the entire project life cycle. When we find the right balance
of bandwidth, time to market, and developer time, we can maximize
the virtuous cycle and ensure the highest return on investment for
everyone.

Bandwidth
Bandwidth is high value for users and low value for the business.

The cloud has made bandwidth and processing power relatively
cheap compared to the “old” ways of on-premises servers and IT
management. Now, anyone can spin up a cloud server, cloud stor‐
age, or any number of software as a service or platform as a service
providers to build and serve their application. Broad access to CDN
technology reduces the cost even further, potentially reducing the
business cost for delivery to incredibly low amounts.

However, this low cost on the delivery side makes it easy for organ‐
izations to build inefficient code that uses more resources. This
inefficiency is paid for by UX—time to first paint, device memory,
load times, connection speed, latency, etc., which can have a dra‐
matic impact on the end experience and kill an otherwise great
application.

Customers expect fast responses and simple interfaces. They expect
access on mobile devices with smaller screens and slower connec‐
tions. A web application that loads in 1–2 seconds on a computer
can take 10 times as long on a mobile or IoT (Internet of Things)
device, frustrating end users and driving them away.

We must always think about the user and ensure we are building
great experiences. As much as possible, we want to use server-side
rendering (SSR) for pages and content, and cache it at the edge. This
can be further augmented by a static site generator (SSG) where it
makes sense, though we want to be careful not to overoptimize for
UX at the expense of DX.

24 | Chapter 4: Resource Flow and Efficiency: Balancing Business and User Needs

Above all, keep the size of payload as low as possible in order to
conserve the bandwidth of the user. Some strategies include:

• Aggregate and minify JS and CSS aggregation and minification.•
• Create JS collections to package and remove unused code from•

pages.
• Compress your assets so they are as small as possible.•
• Use lazy loading techniques to only load larger assets when they•

are needed.
• Follow progressive web application strategies for preloading•

common assets.
• Rely on local caching to avoid making duplicate requests.•
• Enhance your application with offline access to ensure your•

application is always available once users have loaded it.
• Limit the amount of JS parsing on the client.•
• Consider using preprocessing techniques to keep client-side•

code fast.
• Avoid using heavy JS frameworks unless absolutely necessary.•
• Push as much JS to the bottom of the page to keep it from•

blocking initial paint.
• Remove or delay third-party JS libraries that will slow down•

your page.
• Use responsive web design to avoid loading large assets on•

smaller devices.

Designers want big images and videos. Marketers want tracking
and analytical data from across their toolset. Developers want cool
features and app-like interactions. All of these are easy to put into
a web application, and all of them carry a fairly big cost. Giving
everyone on the business side what they want will cause the user to
pay the price.

Be ruthless in your efforts to keep bandwidth “costs” low, and be
creative in ways to limit, delay, or hide the loading of assets so they
don’t block the user’s experience. Your application will be faster,
your UX will be enjoyable, and your customers will thank you.

Bandwidth | 25

Time to Market
Time to market (TTM) is a middle value for both users and the
business.

Value is only realized when it is delivered. Great information, fea‐
tures, or integrations in your web application can only affect the
user and the business only after they are deployed and available.

So TTM, or value throughput, is an important consideration. A
large benefit of the virtuous cycle is that it enables the business
to provide faster and more consistent delivery of value. This is
accomplished by removing bottlenecks and other impediments to
workflow.

For the business, this enables them to get out new messaging, release
new features, and deliver other assets to the field as quickly as
possible. With a good workflow, the creation of these resources can
immediately flow into delivery with little to get in the way.

For the end user, faster TTM means they will get those features and
resources quickly. Users expect instant access to information and
continuous feature releases and improvements.

To increase TTM, look for opportunities to leverage low-code tools
to empower business users and provide self-service opportunities
to create and deliver work as efficiently as possible. Ensure that
you are decoupling content and experience management from code
deployment where possible.

Where the high-code approach is necessary, be sure to invest in
continuous delivery processes to automate building, testing, and
deployment of code. Composable workflows will also help to reduce
rework and leverage existing code.

These concepts are about parallelizing the workflow to remove serial
bottlenecks and move delivery as close to creation as possible. The
goal is to get a quick turnaround from creation to delivery so you
can get feedback quickly as well. This is part of the virtuous cycle
because it makes it easier to rapidly evolve the application and adapt
to changing requirements.

26 | Chapter 4: Resource Flow and Efficiency: Balancing Business and User Needs

Developer Time
Developer time is low value for users and high value for the business.

Developer time is one of the most valuable resources that a business
has. These people are vital to ensure the proper building, mainte‐
nance, and uptime of the web application. The more experienced
they become, the more valuable they become as well.

Unfortunately, the end user doesn’t need to care about the cost of
developer time. As a consumer of the application, the cost to build
the application is largely abstracted away. The only real way that
developer time impacts the end user is when it impacts features or
TTM.

Increasing DX means investing in the tools and processes to make it
easier for developers to be productive. Continuous delivery practices
can enable automated testing, linting, building, code-quality scans,
and other processes that can enhance developer productivity. These
can also be used to enforce best practices and ensure consistency
across the team.

Look for ways to reduce the distractions for developers. The typical
developer only spends about 35% of their time writing the code.
Automation can help free up time, as can following agile practices
and reducing extraneous meetings.

Also look for ways to let developers focus on high-value activities.
Low-code tools can enable nondevelopers to control some assem‐
bly options and keep developers from using their time to arrange
components on a page. Developers should be building, testing, and
deploying components. They should be researching new technolo‐
gies, experimenting with innovative ideas, and improving deploy‐
ment processes.

Standardizing on a common toolset and managing that toolset will
be vital to optimizing developer time. The goal should be to have
systems in place to enable a new developer on a project to be up and
running with an optimized development environment, process, and
workflow in 30 minutes or less.

If you can’t standardize the development experience and workflow
across the team, then you can’t enable good flow. At its core, the
virtuous cycle is about inducing smooth and efficient workflows.
Good DX is vital to the success of any development team.

Developer Time | 27

CHAPTER 5

Bringing It All Together

Many organizations struggle with building successful web applica‐
tions because they get trapped in the vicious circle of development
known as the software crisis. In an attempt to escape the trap, teams
may try to look for a silver bullet or some technology that will finally
save them.

Technology is not the solution to the problem. The real secret to
the vicious circle is the mindset we must adopt to instead create the
virtuous cycle. When this cycle is created, technical debt is reduced,
throughput is increased, and the workflow becomes more efficient
over time.

The core architecture for creating the virtuous cycle is composabil‐
ity. Successful teams know that we must avoid the monolith by
building components and choosing the best assembly method to
package and reuse those components in reliable ways.

There are also distinct principles that software engineers should
keep in mind in order to keep their projects on track. These princi‐
ples are useful to any application development process and can be
applied at multiple stages.

Your user cares about the experience, which is largely impacted by
bandwidth and delivery options. The business cares about developer
time as a valuable resource and how to set up the right workflows
to maximize efficiency and workflow. These priorities also help both
the user and the business maintain throughput and a fast time to
market.

29

Innovation is important and evaluating new technologies can pro‐
vide new opportunities to disrupt the status quo. However, every‐
thing old is new again. A thorough understanding of the principles
of good web applications will allow even old technologies to win
against the latest and greatest.

Textbook Example
So, what does an amazing web application look like? We have a great
example making waves right now—Wordle.

Wordle is a web application created by Josh Wardle. It’s an elegant
game that provides a daily word that must be guessed in 6 tries or
less. The game features a simple interface that tells the user which
letters are correct or wrong based on colored boxes.

Josh created this web application as a gift for his partner, who loves
word games. It has become a bit of a viral phenomenon, had some
improvements over time, and was sold to The New York Times for a
“low seven figures.”

While the creativity and simplicity of the game itself is part of its
appeal, as a web application, it embodies many of the principles and
recommendations in this report:

KISS
The game is very simple overall, and while it does have some
settings and additional features, they are also limited. There was
no plan to monetize or advertise in the game, and it was always
intended to stay simple.

Standardization
The game is built using vanilla JavaScript and native web
components.

Low tech
There are no fancy frameworks or libraries used to build the
application. Much of the elegance of the application is due to
its reliance on commonly accessible features in the browser, like
local storage and custom components.

DRY
As a component-based application, it is very DRY.

30 | Chapter 5: Bringing It All Together

https://oreil.ly/ryAB7

Incremental development
Josh has talked about how he made changes to the application
over time, even adopting features (like the share) from user
feedback.

Stateless
The game ships with all the code and data it needs and main‐
tains state in the browser. This means that every user has their
own experience and stats, but there is no need for the code to
manage that state directly.

Additionally, this is a very efficient application. It is relatively small
in size, so it can quickly and easily be downloaded by anyone in the
world. The code is cached locally to some degree, so subsequent
reloads each day are superfast. This makes it infinitely scalable
because there is no heavy backend to maintain, and the application
is self-contained. Millions and millions of people all over the world
play this game every day, and yet the delivery costs are almost
nothing.

The application was built by a single developer who didn’t need a
massive team or an incredible amount of time. It was also based on
some earlier experiments Josh tried out, showing that some degree
of standardization and reuse are at play.

As an application, Wordle is much simpler than what most organ‐
izations will want and need to build. However, it is a beautiful
example of the principles of the virtuous cycle in the real world.

This application can live for years and years without any additional
investment and could also be the basis for other games. Each varia‐
tion would have been easy and fast to create, additional features
could be added with minimal difficulty, and all of this potential
exists because it is a composable application that embodies the virtu‐
ous cycle.

Where to Go from Here
This report is purposefully vague about specific technologies and
architectures that can be applied. The goal is not to tell you what
to think and do, but how to think. It should be a useful resource
for discussions about your current and upcoming projects. It can
also help provide a common language for describing problems,
solutions, and objectives.

Where to Go from Here | 31

Some parting advice:

• Be wary of new technologies but be excited about new possibil‐
ities. There is no silver bullet out there, and new technologies
should be evaluated on their own merit. There is no need to
worry about missing out.

• Focus on the common standards and traditional approaches
and learn how to properly apply them following the principles
in this report.

• Mind your resource workflow and focus on UX as well as
DX. Look for ways to be “lazy” and reuse code, whether that
is from internal component libraries or external open source
repositories.

• Keep your wits about you—the software crisis is ever present. A
composable approach to application development coupled with
a focus on elegant simplicity will save you and your team.

The secret is to invest in developing your mindset. Everything else
will flow naturally from there.

32 | Chapter 5: Bringing It All Together

About the Author
Ron Northcutt is the director of developer advocacy at Acquia,
where he started as a solutions architect in 2014. In that time,
he has helped contribute to tens of millions of dollars in revenue
and numerous success stories inside and outside of the company.
Interacting with so many large-scale projects has given him unique
insight into application design.

Ron is a professional problem solver with a long history of diverse
experiences. From ranch management to real estate brokerage to
solutions architecture, his 25 years of experience in web technology
has allowed him to see multiple cycles in the industry, as well as the
underlying patterns that form successful projects—and the ones that
form dismal failures.

He is an avid supporter of open source software, and a frequent
contributor to several projects, especially Drupal. When not at work
or online, Ron attempts to play guitar and rock climb. His children
do a good job at keeping him humble on all accounts.

	Acquia
	Copyright
	Table of Contents
	Introduction
	Web-Based Solutions and Challenges
	Vicious Circle Versus Virtuous Cycle
	Primary Challenges
	Creating Virtuous Cycles

	Chapter 1. Vicious Circles: The Well-Worn Path
	Poor Choices
	Shiny Object Syndrome
	Architecture-First Design
	Monolithic Myths

	Chapter 2. Composable: Not Just a Buzzword
	Component-Based Design Principles
	Component Assembly Methods
	The Prime Directive

	Chapter 3. Virtuous Cycle: The Principles That Lead to Success
	Separation of Concerns
	Think of the User
	Keep It Simple, Stupid
	Don’t Repeat Yourself
	Abstraction
	Single Responsibility Principle
	Comment Your Code
	Generality
	Perfect Is the Enemy of Good
	Consistency
	Open Source
	Incremental Development

	Chapter 4. Resource Flow and Efficiency: Balancing Business and User Needs
	Bandwidth
	Time to Market
	Developer Time

	Chapter 5. Bringing It All Together
	Textbook Example
	Where to Go from Here

	About the Author

